Relating Granger causality to directed information theory for networks of stochastic processes
نویسندگان
چکیده
This paper addresses the problem of inferring circulation of information between multiple stochastic processes. We discuss two possible frameworks in which the problem can be studied: directed information theory and Granger causality. The main goal of the paper is to study the connection between these two frameworks. In the case of directed information theory, we stress the importance of Kramer’s causal conditioning. This type of conditioning is necessary not only in the definition of the directed information but also for handling causal side information. We also show how directed information decomposes into the sum of two measures, the first one related to Schreiber’s transfer entropy quantifies the dynamical aspects of causality, whereas the second one, termed instantaneous information exchange, quantifies the instantaneous aspect of causality. After having recalled the definition of Granger causality, we establish its connection with directed information theory. The connection is particularly studied in the Gaussian case, showing that Geweke’s measures of Granger causality correspond to the transfer entropy and the instantaneous information exchange. This allows to propose an information theoretic formulation of Granger causality. keywords directed information, transfer entropy, Granger causality, graphical models
منابع مشابه
The Relation between Granger Causality and Directed Information Theory: A Review
This report reviews the conceptual and theoretical links between Granger causality and directed information theory. We begin with a short historical tour of Granger causality, concentrating on its closeness to information theory. The definitions of Granger causality based on prediction are recalled, and the importance of the observation set is discussed. We present the definitions based on cond...
متن کاملGranger causality
Granger causality is a statistical concept of causality that is based on prediction. According to Granger causality, if a signal X1 "Granger-causes" (or "G-causes") a signal X2, then past values of X1 should contain information that helps predict X2 above and beyond the information contained in past values of X2 alone. Its mathematical formulation is based on linear regression modeling of stoch...
متن کاملMultiscale Granger causality.
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formaliz...
متن کاملSmall-world directed networks in the human brain: Multivariate Granger causality analysis of resting-state fMRI
Small-world organization is known to be a robust and consistent network architecture, and is a hallmark of the structurally and functionally connected human brain. However, it remains unknown if the same organization is present in directed influence brain networks whose connectivity is inferred by the transfer of information from one node to another. Here, we aimed to reveal the network archite...
متن کاملApplication of Stochastic Optimal Control, Game Theory and Information Fusion for Cyber Defense Modelling
The present paper addresses an effective cyber defense model by applying information fusion based game theoretical approaches. In the present paper, we are trying to improve previous models by applying stochastic optimal control and robust optimization techniques. Jump processes are applied to model different and complex situations in cyber games. Applying jump processes we propose some m...
متن کامل